Skip to content

Coordinate Pair Accumulator

Note

If two points share the same Y value, swapping them does not change the result of \(p(x)\).

Scheme

The coordinate pair accumulator \(p(x)\) is defined as:

\[ \begin{aligned} p(x + 1) = p(x) \cdot (\upsilon_1 + X(x) + \upsilon_2 \cdot Y(x)) \end{aligned} \]
  • \(X(x)\) and \(Y(x)\) are two polynomials representing the \(x\) and \(y\) coordinates of a set of points.
  • \(\upsilon_1\) and \(\upsilon_2\): random constants
  • \(p(0) = 1\)

When we swap \(X\) in positions where they have the same \(Y\) value (e.g., when \(x = 1,3\)), the value of \(p(x)\) remains unchanged. Thus, we can verify if two positions share the same Y value by checking if \(p(x)\) retains its value after the permutation.

Example

Let \(\upsilon_1 = 3\) and \(\upsilon_2 = 2\), we have:

\(x\) \(0\) \(1\) \(2\) \(3\) \(4\)
\(X(x) = x\) \(0\) \(1\) \(2\) \(3\)
\(Y(x) = x^3 - 5x^2 + 7x - 2\) \(-2\) \(1\) \(0\) \(1\)
\(\upsilon_1 + X(x) + \upsilon_2 \cdot Y(x)\) \(-1\) \(6\) \(5\) \(8\)
\(p(x)\) \(1\) \(-1\) \(-6\) \(-30\) \(-240\)
\(x\) \(0\) \(1\) \(2\) \(3\)
Before
\(X(x) = x\) \(0\) \(1\) \(2\) \(3\)
\(Y(x)\) \(-2\) \(1\) \(0\) \(1\)
After ....
\(X(x) = \frac{2}{3}x^3 - 4x^2 + \frac{19}{3}x\) \(0\) \(3\) \(2\) \(1\)
\(Y(x)\) \(-2\) \(1\) \(0\) \(1\)

Comments