Coordinate Pair Accumulator¶
Note
If two points share the same Y value, swapping them does not change the result of \(p(x)\).
Scheme¶
The coordinate pair accumulator \(p(x)\) is defined as:
\[
\begin{aligned}
p(x + 1) = p(x) \cdot (\upsilon_1 + X(x) + \upsilon_2 \cdot Y(x))
\end{aligned}
\]
- \(X(x)\) and \(Y(x)\) are two polynomials representing the \(x\) and \(y\) coordinates of a set of points.
- \(\upsilon_1\) and \(\upsilon_2\): random constants
- \(p(0) = 1\)
When we swap \(X\) in positions where they have the same \(Y\) value (e.g., when \(x = 1,3\)), the value of \(p(x)\) remains unchanged. Thus, we can verify if two positions share the same Y value by checking if \(p(x)\) retains its value after the permutation.
Example¶
Let \(\upsilon_1 = 3\) and \(\upsilon_2 = 2\), we have:
\(x\) | \(0\) | \(1\) | \(2\) | \(3\) | \(4\) |
---|---|---|---|---|---|
\(X(x) = x\) | \(0\) | \(1\) | \(2\) | \(3\) | |
\(Y(x) = x^3 - 5x^2 + 7x - 2\) | \(-2\) | \(1\) | \(0\) | \(1\) | |
\(\upsilon_1 + X(x) + \upsilon_2 \cdot Y(x)\) | \(-1\) | \(6\) | \(5\) | \(8\) | |
\(p(x)\) | \(1\) | \(-1\) | \(-6\) | \(-30\) | \(-240\) |
\(x\) | \(0\) | \(1\) | \(2\) | \(3\) |
---|---|---|---|---|
Before | ||||
\(X(x) = x\) | \(0\) | \(1\) | \(2\) | \(3\) |
\(Y(x)\) | \(-2\) | \(1\) | \(0\) | \(1\) |
After | .... | |||
\(X(x) = \frac{2}{3}x^3 - 4x^2 + \frac{19}{3}x\) | \(0\) | \(3\) | \(2\) | \(1\) |
\(Y(x)\) | \(-2\) | \(1\) | \(0\) | \(1\) |